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Extending the recent work of the bond-propagation algorithm �Y. L. Loh and E. W. Carlson, Phys. Rev. Lett.
97, 227205 �2006��, we present an efficient algorithm for calculating the correlation functions between any
two �or more� spins of Ising models in two dimensions. With this algorithm, the spontaneous magnetization,
correlation length, and susceptibility can be calculated. The results for the usual Ising model with different size
lattices are compared with the exact results. We also present the correlation functions for the �J random-bond
Ising model.
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I. INTRODUCTION

It is well known that Ising model is the basic model in
study on phase transition. Although it is simple, the exact
solutions can be obtained in rare cases. Recently an efficient
algorithm is presented for computing the partition function in
two dimension �2D� which is exact to machine precision and
works for any planar network of Ising spins with arbitrary
bond strengths.1,2 The algorithm executes in O�N3/2� time for
most planar networks of interest, much faster than other nu-
merical method. This method works by successively integrat-
ing in and then integrating out spin degrees of freedom in a
way that only introduces local changes to the network, in
order to progressively move degrees of freedom to an open
edge of the network, where they are eliminated. It is called
the bond-propagation �BP� algorithm. There are two basic
transformations required: a series reduction and the so-called
Y-� transformation �along with its corresponding inverse�.
Using these ingredients, a 2D bond network can be effi-
ciently reduced to a single net bond. Then one can get the
partition function and heat capacity, etc. In fact BP algorithm
is an extension of a bond-propagation algorithm originally
developed for resistor networks.3

In Ref. 2, a method to evaluate the correlation function
between two corner spins of a finite lattice is also presented.
However we find that extending BP algorithm the correlation
functions between any two spins �even many spins� can be
evaluated. In our algorithm the concerned spins are propa-
gating, so it can be called site-propagation �SP� algorithm.
With this algorithm the spontaneous magnetization, correla-
tion length, susceptibility can be calculated. As the BP algo-
rithm, it also can be applied to random-bond Ising models
�RBIM� and geometric frustration as in the case of triangular
Ising antiferromagnets but without external field.

For the pure 2D Ising model, beside the famous work of
Onsager on the partition function4 and Yang’s work on spon-
taneous magnetization,5 Wu and McCoy had done formi-
dable work to study the correlation functions.6–8 As a test of
SP algorithm, we calculate the spontaneous magnetization,
the critical correlation function, and correlation length on
lattices with size up to 1024�1024. The results agree with
the famous Yang’s work on the spontaneous magnetization
and Wu et al.’s work on the correlation functions. Our results

are obtained on a common workstation and in several weeks,
so one can see the high efficiency of this algorithm easily.

Of course there is nothing new for the pure 2D Ising
model. However, the Ising models with randomness are still
of much interest. The models with weak randomness has
been studied for more than 20 years, they are still
controversial.9–15 The RBIM with strong randomness, the
Ising spin glass, have been intensively studied, especially on
Nishimori point, by renormalization group, numerical trans-
fer matrix and Monte Carlo simulation.16–22 As an example
we show some typical correlation functions for the �J
RBIM at the end of paper. SP algorithm can provide another
powerful tool to study this kind of models.

We arrange this paper as follows. In Sec. II, we give the
SP algorithm. In Sec. III, we calculate the correlation func-
tion for the pure two-dimensional Ising model with SP algo-
rithm. The spontaneous magnetization, correlation length,
and the critical correlation are calculated and compared with
the exact results. In Sec. IV, SP algorithm is applied to RBIM
simply. Section V is a summary.

II. SITE-PROPAGATION ALGORITHM

Our goal is to calculate the two point correlation on a 2D
lattice

��r�r�� =
1

Z
�
��i	

�r�r�e
−�H, �1�

where Z is the partition function. We call �r and �r� the
concerned spins in the following. The Ising Hamiltonian is
given by

− �H = �
�i,j�

Jij�i� j . �2�

where the nearest-neighbor dimensionless couplings

Jij =�J̃ij are arbitrary real numbers. The denominator in Eq.
�1�, the partition function, can be calculated with the bond-
propagation �BP� algorithm.1,2 The numerator in Eq. �1� can
be calculated with the site-propagation algorithm, which is
shown schematically in Fig. 1. Besides the BP “series” re-
duction and BP Y-� transformation defined in Refs. 1 and 2,
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a site-propagation “series” reduction and a SP Y-� transfor-
mation are necessary in the algorithm.

We define the SP series reduction and SP �-Y transforma-
tion. These building blocks are transformations of the J’s that
preserve the value of the numerator in Eq. �1�. SP “series”
reduction corresponds to integrating out a spin with two
neighbors, generating an effective coupling J12 to make the

�
�

�e��J1�1+J2�2� = �1e�G+J12�1�2, �3�

�see Fig. 2�a��. It is convenient to use variables ji=e−Ji,
jij =e−Jij, and �g=e�G. Then we get the solution �g=
z0z1,
j12=z1 /�g, where z0= 1

j1j2
− j1j2 and z1= j2 / j1− j1 / j2. Because

the solutions in SP series reduction and �-Y transformation
are usually complex even if the initial couplings are real, we
need use complex algorithm. We do not use another solution
�g=
z0


z1, j12=
z1 /
z0, because it contain more computa-
tions of square root than the former solution. Although the
former solution is different from the latter one in some cases,
it can be shown that the former solution satisfy also Eq. �3�.
For example, given z0=a0ei	0, z1=a1ei	1 with 	0+	1
2�,
2�
	1−	0
0. The former solution leads to �g

=
a0a1ei�	0/2+	1/2−�� and j12=
a1 /a0ei�	1/2−	0/2+�� and the

latter one leads to �g=
a0a1ei�	0/2+	1/2� and j12
=
a1 /a0ei�	1/2−	0/2�. However both of them satisfy Eq. �3�.

The SP �-Y transformation corresponds to introducing a
new spin � to make

�1eJ12�1�2+J23�2�3+J31�3�1 = e�G�
�

�eJ1�1�+J2�2�+J3�3�. �4�

The concerned spin �1 is shifted to the center spin � in the
“Y” �see Fig. 2�b��. The couplings of the resulting “Y” and
the correlation shift are

j1 =
 t1 − 1

t1 + 1
, j2 =
z2 + z3j1

2

z0 + z1j1
2 ,

j3 =
z3 + z2j1
2

z0 + z1j1
2 , �g =

z0

1

j1j2j3
− j1j2j3

, �5�

where t1=
c2c3 / �c0c1�, with c0=z0+z1+z2+z3 and
c1=z0+z1−z2−z3, and c2 ,c3 are obtained by cyclic permuta-
tion, and z0= 1

j12j23j31
, z1=

j12j31

j23
and z2=

j12j23

j31
, z3=

j23j31

j12
. Naive

permutation from j1 to j2 , j3 will cause errors in phase factor
and such solution cannot satisfy Eq. �4�. Of course, one can
get j2 at first, then express j1 , j3 in terms of j2 like Eq. �5�. It
can be easily shown that the transformation is the same as
BP �-Y transformation if the concerned spin remains at the
top rather than be shifted to the center of Y.

The inverse of SP �-Y transformation is SP Y-� transfor-
mation defined by the following equation:

e�G�1eJ12�1�2+J23�2�3+J31�3�1 = �
�

�eJ1�1�+J2�2�+J3�3�. �6�

where the concerned spin � is shifted to be top spin �1 �see
Fig. 2�b��. One solution is given by

�g = �z0z1z2z3�1/4, j12 =
�g


z0z3

,

j23 =
1

j12

z2

z0
, j31 =

�gj12j23

z2
, �7�

where z0= 1
j1j2j3

− j1j2j3, z1=
j2j3

j1
−

j1

j2j3
, z2= j2

j1j3
−

j1j3

j2
, and z3

=
j3

j1j2
−

j1j2

j3
. It should be noted that �1 is the concerned spin,

and not symmetric with �2 ,�3, so z2 ,z3 �or j2 , j3� are not
obtained from z1 �or j1� by cyclic permutation. It can be
easily shown that the transformation is the same as BP Y-�
transformation if the concerned spin is at the top of Y and
stays still at the top of � after the transformation. For ex-
ample, from Figs. 1�c� and 1�d�, such a transformation is
used.

If the two concerned spins are nearest neighbors, it can be
shown that the SP series reduction and �-Y transformation
�along with its inverse�, in which one of the spins is shifted,
also exist, and the transformation formulas are the same as
those discussed above. In addition, in the propagation pro-
cess the trajectories of the two concerned spins must not

(a) (b) (c)

(d)(e)(f)(g)

FIG. 1. The algorithm for calculating the numerator in Eq. �1�.
The two open circles represent the concerned spins. Using BP series
reduction, BP Y-� and its inverse, one can transform the lattice
from �a� to �b�. From �b� to �c�, the SP �-Y transformation is used.
From �e� to �f�, the SP series reduction is used. Finally the two
concerned spins are shifted to the right down corner.

31J12J

23J

1J
2J

3J

1J 2J 12J
(a) SP series

(b) SP �-Y

FIG. 2. Building blocks of site propagation. �a� SP series. In a
SP series reduction, the middle spin �which is the concerned spin� is
integrated out. The concerned spin is shifted to be the right spin. �b�
SP �-Y and Y-�. In a SP �-Y transformation, a new spin �the center
spin in Y� is introduced. After SP �-Y the concerned spin �the top
spin in �� is shifted to be the center spin of Y. See Eq. �4� for
formulas relating the coupling constants in these transformations.
After SP Y-� the concerned spin �the center spin of Y� is shifted to
be the top spin in �. See Eq. �6� for formulas.
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intersect because two concerned spins cannot occupy a same
site. Although in the intermediate steps the couplings are
usually complex, the final result should be real. Due to the
round-off error there are small imaginary parts.

As the bond-propagation algorithm,1 the site-propagation
algorithm requires open boundary conditions in at least one
direction in order to have a free edge at which propagating
bonds can annihilate. Therefore, the algorithm can work with
open boundary conditions in both directions, or cylindrical
boundary conditions �open in one direction but periodic in
the other�, but not a torus. Cylinders with skew-periodic or
helical boundary conditions may be used as well. The site-
propagation algorithm can also be straightforwardly adapted
to infinite strips.

III. COMPARISON WITH THE EXACT RESULTS
ON PURE ISING MODEL

To test the site-propagation algorithm, we apply it to the

uniform ferromagnetic Ising model with J̃ij =1 on a square
lattice with open boundary. We show some typical correla-
tion functions on 1024�1024 square lattice in Fig. 3�a�.
From these correlation functions we obtain spontaneous
magnetization as shown in Fig. 3�b�, the critical correlation
functions in Fig. 3�c�, and correlation length for T
Tc in
Fig. 3�d�.

In Fig. 3�a�, from bottom to top the five groups of curves
are at temperatures �=0.4401, 0.4405, 0.04408, 0.4425,
0.4455, respectively. The thick solid curves are correlation
along the horizontal �or vertical� direction in the middle of
the lattice, where the positions of concerned spins are given
by r= �512− l ,512�, r�= �512+ l ,512� and �r−r��=2l, where
l=1,2 , . . .. The thin dotted curves are correlation along diag-
onal direction, where the positions of concerned spins are

given by r= �513− l ,512+ l�, r�= �512+ l ,513− l�, and
�r−r��=2
2l. They coincide well for distances much less
than the lattice size. If the system is infinite, the increases of
slopes of the curves should become less as the distances
become large. However, as one see in Fig. 3�a�, the slopes of
curves become larger as the distances approach the lattice
size. This is caused by the open boundary. For the correlation
function along diagonal direction there is larger range of dis-
tance immune from the boundary effect than those along
horizontal direction. Therefore the results of spontaneous
magnetization, critical correlation and correlation length in
Fig. 3�a�, 3�b�, and 3�d�, are obtained from the correlation
functions along diagonal direction.

As one can see in Fig. 3�a�, there are plateaus for
�=0.4425, 0.4455. From these plateaus we can draw spon-
taneous magnetization. As we know lim�r−r��→���r�r��=m2,
where m is the spontaneous magnetization. See the curves
for �=0.4425, 0.4455, after the correlation decays to a pla-
teau, it decays further as the two concerned spins approach
the edges because of boundary effect. We choose the corre-
lation as m2 at the point where the slope is minimum. Then
we get the results in Fig. 3�b�, which agree well with Yang’s
exact solution5 in certain ranges of temperature.

At the critical point �=�c, the exact correlation function
has been calculated in Ref. 8 and it behaves like
��r�r��=0.70338 / �r−r��1/4, which is shown in Fig. 3�c� with
the black solid line. Due to the boundary effect, the numeri-
cal results deviate the exact result as the distance approaches
the lattice size. Since the lattices are finite, the effective criti-
cal temperatures are different for different size lattices and
different from that for infinite system �c

�=0.440 686 8. For
256�256 lattice, we compare the correlation functions for
�=0.440625, 0.441 25, 0.441 875 and find the correlation
function for �=0.441 25 fit the exact result best. For
512�512 lattice we choose the result for �=0.441 from the
results for �=0.440, 0.441, 0.442. For 1024�1024 lattice
we choose the result for �=0.4408 from the results for
�=0.4407, 0.4408, 0.4409.

For �
�c �or T
Tc� the exact correlation function is
�e�r−r��/� /r1/2 for �r−r�� /��1, where �
�4��−�c��−1,6,7

which is drawn in black solid line in Fig. 3�d�. We fit the
numerical results then get the correlation length shown in
Fig. 3�d�. If the critical temperature shift due to the finite size
effect is taken into account, the coincidence with the exact
results will be better.

IV. CORRELATION FUNCTIONS OF RBIM

Now we present some typical correlation functions for
RBIM. Using SP algorithm, one can get the correlation func-
tion directly, including the sign. As an example, we show the
results on 256�256 square lattice with nearest-neighbor �J
in Fig. 4. The nearest-neighbor interactions Jij are taken as
random variables with a distribution PJ�Jij�. We consider the
simple distribution PJ�Jij�= p��Jij +J�+ �1− p���Jij −J�, cor-
responding to a fraction p of antiferromagnetic bonds.

In Fig. 4�a�, we calculate the correlation function for a
sample �with a particular realization of bonds� with p=0.05
and r= �128,129�, r�= �128+m ,129�, m=1,2 ,3 , ¯ ,128 at

FIG. 3. �Color online� �a� Typical correlation functions calcu-
lated with SP algorithm. �b� The spontaneous magnetization on a
square lattice with uniform coupling. The black solid curve is the
exact result of Yang �Ref. 5� �c�. The correlation function at critical
point. The results on 256�256 lattice are at �=044125,
512�512 lattice at �=0.4410, and 1024�1024 lattice at
�=0.4408. �d� The correlation length for T
Tc on a square lattice
with uniform coupling.
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five temperatures �=0.51, 0.53, 0.54, 0.55, 0.56. The maxi-
mum of specific heat of this sample is at �=0.536�0.005,
which can be regarded the critical temperature. Note that at
r�=128+17 and 128+48 the correlation is negative. The rea-
son is simple. It is found that the bond between sites �128
+16,129� and �128+17,129� is antiferromagnetic. So is the
negative correlation at r�=128+48. The other drastic drops
in correlation functions are due to the antiferromagnetic
bonds near the corresponding spin.

We also show averaged correlation functions over 11
samples �with 11 different realizations of bonds� in Fig. 4�b�.
The parameters for the 11 samples are the same as the
sample in Fig. 4�a�. The correlation for each sample is cal-
culated with p=0.05 and r= �128,129�, r�= �128+m ,129�,
m=1,2 ,3 , . . . ,128 at five temperatures �=0.51, 0.53, 0.54,
0.55, 0.56. Obviously the averaged correlation function be-
comes less oscillatory. However the drastic drops become
dense although the amplitudes of drop become small. This is
because the antiferromagnetic bonds distribute randomly. For
different samples, the drops in correlation locate at different
sites. Obviously the more the samples are averaged over, the

more drops are present, and the smaller the amplitudes of
drop become.

There exist some numerical methods to study RBIM. One
of an efficient method to study RBIM is the fermion network
method fermion-network method of Merz and Chalker.20

However with this method, odd powers of correlation func-
tions, including the first power, appear to be much harder to
evaluate, leaving the sign of the correlation function undeter-
mined. Correlation functions can also be studied with Monte
Carlo simulations23,24 or transfer-matrix calculations in a
spin basis.21,25 However, for Monte Carlo simulations there
are the statistical sampling errors. If implemented using the
transfer matrix, transfer-matrix dimension grows exponen-
tially with system width that occurs if this matrix is written
in a spin basis. For example, the system with width 64 is
very large for the transfer-matrix method.21

Using SP algorithm, one can get the correlation functions,
which can provide more information than its even powers. In
addition the lattice size can be as large as �103�103. There-
fore this algorithm provide another efficient way to study
RBIM.

V. CONCLUSION

In conclusion we have developed a highly efficient algo-
rithm to calculate the correlation functions for the two-
dimensional Ising model with arbitrary bond strengths on
planar graphs. With this method, only O�L2� memory is re-
quired to store the bond strengths, and O�L3� time is taken.

We have shown how to calculate the spontaneous magne-
tization and correlation length with SP algorithm. The sus-
ceptibility can also be calculated according to �−1�
=�r����r�r��− ���2�. Such a calculation will cost huge
amount of time if it is carried on a common workstation for
large size lattices, say 1024�1024. However it should not be
too difficult through large scale parallel computing. In addi-
tion, although only two point correlation function is dis-
cussed in this paper, the algorithm for many points correla-
tion functions can be developed similarly.
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